The New k-Windows Algorithm for Improving thek -Means Clustering Algorithm
نویسندگان
چکیده
منابع مشابه
The New k-Windows Algorithm for Improving the k-Means Clustering Algorithm
The process of partitioning a large set of patterns into disjoint and homogeneous clusters is fundamental in knowledge acquisition. It is called Clustering in the literature and it is applied in various fields including data mining, statistical data analysis, compression and vector quantization. The k-means is a very popular algorithm and one of the best for implementing the clustering process....
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملk*-Means: A new generalized k-means clustering algorithm
This paper presents a generalized version of the conventional k-means clustering algorithm [Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, University of California Press, Berkeley, 1967, p. 281]. Not only is this new one applicable to ellipse-shaped data clusters without dead-unit problem, but also performs correct clustering without pre-assigning the exact...
متن کاملpersistent k-means: stable data clustering algorithm based on k-means algorithm
identifying clusters or clustering is an important aspect of data analysis. it is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. it is a main task of exploratory data mining, and a common technique for statistical data analysis this paper proposed an improved version of k-means algorithm, namely persistent k...
متن کاملImproving the Performance of K-means Clustering Algorithm
This paper proposed two updating methods to improve the clustering performance of adaptive k-means clustering. The proposed updating methods are suitable for off-line and on-line clustering. The capability of the updating methods are then compared to the existing updating methods using simulated and real data sets. Simulation results showed that the proposed updating methods have significantly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 2002
ISSN: 0885-064X
DOI: 10.1006/jcom.2001.0633